Skip to contents

Plotting function to assess the mean-variance relationship of generated data

Usage

plotVariance(
  model,
  simdat,
  cuts = 20,
  quants = c(0.025, 0.975),
  n.sim = NULL,
  store.data = FALSE
)

Arguments

model

model object of class glm, gam or gamMRSea

simdat

matrix of simulated response data. Each column is a new simulated data set

cuts

The number of cut points for calculation of residual variance

quants

vector of length 2 stating the quantiles for the confidence interval bands for the simulated mean-variance relationship

n.sim

(default = NULL) denotes how many simulations from simdat to use. If NULL then all are used.

store.data

Logical indicating whether or not to return the plotting data. Default is FALSE (no data stored).

Author

Lindesay Scott-Hayward (University of St Andrews)

Examples

data(nystedA_slim)

initialModel<-MRSea::gamMRSea(response ~ 1 + as.factor(yearmonth)+depth +
                     x.pos + y.pos + offset(log(area)),  data=nysted,
                     family=quasipoisson)

nsim<-550
d<-as.numeric(summary(initialModel)$dispersion)
newdat<-generateNoise(nsim, fitted(initialModel), family='poisson', d=d)

plotVariance(initialModel, newdat)
#> Warning: Simulations:  2  removed from plotting owing to extra ordinary values. The vector of ID's has been put in the workspace: badsim.id
#> Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
#> of ggplot2 3.3.4.
#>  The deprecated feature was likely used in the MRSeaPower package.
#>   Please report the issue to the authors.